Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Invertebr Pathol ; : 108126, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734162

ABSTRACT

Aedes-transmitted arboviral infections such as Dengue, Yellow Fever, Zika and Chikungunya are increasing public health problems. Xenorhabdus and Photorhabdus bacteria are promising sources of effective compounds with important biological activities. This study investigated the effects of cell-free supernatants of X. szentirmaii, X. cabanillasii and P. kayaii against Ae. aegypti eggs and larvae and identified the bioactive larvicidal compound in X. szentirmaii using the easyPACId approach. Among the three tested bacterial species, X. cabanillasii exhibited the highest (96%) egg hatching inhibition and larvicidal activity (100% mortality), whereas P. kayaii was the least effective species in our study. EasyPACId method revealed that bioactive larvicidal compound in the bacterial supernatant was fabclavine. Fabclavines obtained from promoter exchange mutants of different bacterial species such as X. cabanillasii, X. budapestensis, X. indica, X. szentirmaii, X. hominckii and X. stockiae were effective against mosquito larvae. Results show that these bacterial metabolites has a potential to be used in integrated pest management (IPM) programmes of mosquitoes.

2.
Pest Manag Sci ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619291

ABSTRACT

BACKGROUND: In the perpetual struggle to manage mosquito populations, there has been increasing demand for the development of biopesticides to supplant/complement current products. The insecticidal potential of Xenorhabdus and Photorhabdus has long been recognized and is of interest for the control of important mosquitoes like Aedes albopictus which vectors over 20 different arboviruses of global public health concern. RESULTS: The larvicidal effects of cell-free supernatants, cell growth cultures and cell mass of an extensive list of Xenorhabdus and Photorhabdus spp. was investigated. They were quite effective against Ae. albopictus causing larval mortality ranging between 52-100%. Three Photorhabdus spp. and 13 Xenorhabdus spp. release larvicidal compounds in cell-free supernatants. Cell growth culture of all tested species exhibited larvicidal activity, except for Xenorhabdus sp. TS4. Twenty-one Xenorhabdus and Photorhabdus bacterial cells (pellet) exhibited oral toxicity (59-91%) against exposed larvae. The effect of bacterial supernatants on the mosquito eggs were also assessed. Bacterial supernatants inhibited the hatching of mosquito eggs; when unhatched eggs were transferred to clean water, they all hatched. Using the easyPACId approach, the larvicidal compounds in bacterial supernatant were identified as fabclavine from X. szentirmaii and xencoumacin from X. nematophila (causing 98 and 70% mortality, respectively, after 48 h). Xenorhabdus cabanillasii and X. hominickii fabclavines were as effective as commercial Bacillus thuringiensis subsp. israelensis and spinosad products within 5 days post-application (dpa). CONCLUSION: Fabclavine and xenocoumacin can be developed into novel biolarvicides, can be used as a model to synthesize other compounds or/and can be combined with other commercial biolarvicides. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
J Invertebr Pathol ; 203: 108045, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38135245

ABSTRACT

Nanomaterials are successful due to their numerous applications in various domains such as cancer treatment, environmental applications, drug and gene delivery. Selenium is a metalloid element with broad biological activities and low toxicity especially at the nanoscale. Several studies have shown that nanoparticles synthesized from microbial and plant extracts are effective against important pests and pathogens. This study describes the bio fabrication of selenium nanoparticles using cell free extract of Xenorhabdus cabanillasii (XC-SeNPs) and assessed their mosquito larvicidal properties. Crystallographic structure and size of XC-SeNPs were determined with UV-a spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Energy-dispersive X-ray spectroscopy (EDAX), Zeta potential and Transmission electron microscopy (TEM). The significant surface plasmon resonance at 275 nm indicated the synthesis of XC-SeNPs from the pure cell-free extract of X. cabanillasii. The XRD result exhibits the crystalline nature of XC-SeNPs. The Zeta potential analysis confirmed that the surface charge of XC-SeNPs was -24.17 mV. TEM analysis revealed that synthesized XC-SeNPs were monodispersed, spherically shaped, and sized about 80-200 nm range. In addition, the larvicidal potentials of the bio-fabricated XC-SeNPs were assessed against the 4th-instar Ae. aegypti. XC-SeNPs displayed a dose-dependent larvicidal effect; the larval mortality was 13.3 % at the minimum evaluated concentration and increased to 72 % at higher dose treatments. The LC50 and LC90 concentration of XC-SeNPs against mosquito larvae were 79.4 and 722.4 ppm, respectively.


Subject(s)
Aedes , Insecticides , Selenium , Xenorhabdus , Yellow Fever , Animals , Insecticides/pharmacology , Insecticides/chemistry , Larva , Plant Extracts/pharmacology , Plant Extracts/chemistry , Selenium/analysis , Selenium/pharmacology
4.
Acta Trop ; 243: 106893, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37004805

ABSTRACT

Mosquitoes, sandflies, and ticks are hematophagous arthropods that pose a huge threat to public and veterinary health. They are capable of serving as vectors of disease agents that can and have caused explosive epidemics affecting millions of people and animals. Several factors like climate change, urbanization, and international travel contribute substantially to the persistence and dispersal of these vectors from their established areas to newly invaded areas. Once established in their new home, they can serve as vectors for disease transmission or increase the risk of disease emergence. Turkiye (formerly Turkey) is vulnerable to climate change and has experienced upward trends in annual temperatures and rising sea levels, and greater fluctuations in precipitation rates. It is a potential hotspot for important vector species because the climate in various regions is conducive for several insect and acari species and serves as a conduit for refugees and immigrants fleeing areas troubled with armed conflicts and natural disasters, which have increased substantially in recent years. These people may serve as carriers of the vectors or be infected by disease agents that require arthropod vectors for transmission. Although it cannot be supposed that every arthropod species is a competent vector, this review aims to (1) illustrate the factors that contribute to the persistence and dispersal of arthropod vectors, (2) determine the status of the established arthropod vector species in Turkiye and their capability of serving as vectors of disease agents, and (3) assess the role of newly-introduced arthropod vectors into Turkiye and how they were introduced into the country. We also provide information on important disease incidence (if there's any) and control measures applied by public health officials from different provinces.


Subject(s)
Arthropods , Culicidae , Animals , Turkey , Mosquito Vectors , Arthropod Vectors
5.
J Invertebr Pathol ; 196: 107871, 2023 02.
Article in English | MEDLINE | ID: mdl-36493844

ABSTRACT

Photorhabdus spp. and Xenorhabdus spp. bacteria produce a variety of molecules that inhibit bacterial and fungal contamination as well as deter scavenging invertebrates and some vertebrates in soil. Certain Heterorhabditis/Photorhabdus-infected insect cadavers can be bioluminescent in the dark and/or turn red from the production of anthraquinone pigments. The role of these traits remains unresolved. The aim of the present study was to evaluate the role of red color (anthraquinone) and bioluminescence on the deterrence of insect scavengers. Our data shows that scavenger deterrent factor (SDF) is not related to red cadaver coloration or bioluminescence activity as crickets and ants did not consume Galleria mellonella cadavers infected by P. laumondii strain 48-02 and X. bovienii. Both bacteria exhibit SDF activity but do not produce anthraquinone. Also, the insects were not affected by anthraquinone in agar plugs prepared with supernatant from induced P. laumondii Δpptase Pcep-KM-antA (SVS-275) mutant strain, which overproduces anthraquinone. Since bioluminescence and anthraquinone are not responsible for SDF activity against insect scavengers, more studies are needed to elucidate the SDF compound from Xenorhabdus and Photorhabdus bacteria.


Subject(s)
Moths , Nematoda , Photorhabdus , Xenorhabdus , Animals , Cadaver , Insecta , Nematoda/microbiology , Symbiosis
6.
Appl Microbiol Biotechnol ; 106(12): 4387-4399, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35723692

ABSTRACT

Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp., (Fam; Morganellaceae), enteric symbionts of Steinernema, and Heterorhabditis nematodes are naturally found in soil on all continents, except Antarctic, and on many islands throughout the world. These bacteria produce diverse secondary metabolites that have important biological and ecological functions. Secondary metabolites include non-ribosomal peptides, polyketides, and/or hybrid natural products that are synthesized using polyketide synthetase (PRS), non-ribosomal peptide synthetase (NRPS), or similar enzymes and are sources of new pesticide/drug compounds and/or can serve as lead molecules for the design and synthesize of new alternatives that could replace current ones. This review addresses the effects of these bacterial symbionts on insect pests, fungal phytopathogens, and animal pathogens and discusses the substances, mechanisms, and impacts on agriculture and public health. KEY POINTS: • Insects and fungi are a constant menace to agricultural and public health. • Chemical-based control results in resistance development. • Photorhabdus and Xenorhabdus are compelling sources of biopesticides.


Subject(s)
Biological Products , Nematoda , Photorhabdus , Rhabditida , Xenorhabdus , Animals , Biological Products/metabolism , Insecta/microbiology , Nematoda/microbiology , Symbiosis
7.
Sci Rep ; 12(1): 10779, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750682

ABSTRACT

Natural products have been proven to be important starting points for the development of new drugs. Bacteria in the genera Photorhabdus and Xenorhabdus produce antimicrobial compounds as secondary metabolites to compete with other organisms. Our study is the first comprehensive study screening the anti-protozoal activity of supernatants containing secondary metabolites produced by 5 Photorhabdus and 22 Xenorhabdus species against human parasitic protozoa, Acanthamoeba castellanii, Entamoeba histolytica, Trichomonas vaginalis, Leishmania tropica and Trypanosoma cruzi, and the identification of novel bioactive antiprotozoal compounds using the easyPACId approach (easy Promoter Activated Compound Identification) method. Though not in all species, both bacterial genera produce antiprotozoal compounds effective on human pathogenic protozoa. The promoter exchange mutants revealed that antiprotozoal bioactive compounds produced by Xenorhabdus bacteria were fabclavines, xenocoumacins, xenorhabdins and PAX peptides. Among the bacteria assessed, only P. namnaoensis appears to have acquired amoebicidal property which is effective on E. histolytica trophozoites. These discovered antiprotozoal compounds might serve as starting points for the development of alternative and novel pharmaceutical agents against human parasitic protozoa in the future.


Subject(s)
Antiprotozoal Agents , Entamoeba histolytica , Photorhabdus , Trypanosoma cruzi , Xenorhabdus , Antiprotozoal Agents/chemistry , Entamoeba histolytica/metabolism , Humans , Photorhabdus/metabolism
8.
Appl Microbiol Biotechnol ; 105(13): 5517-5528, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34250572

ABSTRACT

Xenorhabdus and Photorhabdus spp. are enteric bacterial symbionts of Steinernema and Heterorhabditis nematodes, respectively. These bacteria produce an extensive set of natural products (NPs) with antibacterial, antifungal, antiprotozoal, insecticidal, or other bioactivities when vectored into insect hemocoel by nematodes. We assessed the in vitro activity of different Xenorhabdus and Photorhabdus cell-free supernatants against important fungal phytopathogens, viz., Cryphonectria parasitica, Fusarium oxysporum, Rhizoctonia solani, and Sclerotinia sclerotiorum and identified the bioactive antifungal compound/s present in the most effective bacterial supernatant using the easyPACId (easy promoter-activated compound identification) approach against chestnut blight C. parasitica. Our data showed that supernatants from Xenorhabdus species were comparatively more effective than extracts from Photorhabdus in suppressing the fungal pathogens; among the bacteria assessed, Xenorhabdus szentirmaii was the most effective species against all tested phytopathogens especially against C. parasitica. Subsequent analysis revealed fabclavines as antifungal bioactive compounds in X. szentirmaii, generated by a polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) hybrid system. Fabclavines are broad-spectrum, heat-stable NPs that have great potential as biological control compounds against fungal plant pathogens. More studies are needed to assess the potential phytotoxicity of these compounds and their effects on non-target organisms before commercialization. KEY POINTS: • Chemical fungicides have toxic effects on humans and other non-target organisms. • Alternatives with novel modes of action to supplant current fungicide are needed. • A novel bioactive antifungal compound from Xenorhabdus szentirmaii was identified.


Subject(s)
Photorhabdus , Xenorhabdus , Animals , Antifungal Agents/pharmacology , Ascomycota , Fusarium , Humans , Plant Diseases , Rhizoctonia , Symbiosis
9.
J Invertebr Pathol ; 184: 107641, 2021 09.
Article in English | MEDLINE | ID: mdl-34186086

ABSTRACT

Entomopathogenic nematodes are used widely in biological insect control. Entomopathogenic nematodes can infect live insects as well as dead insects (i.e., they can act as scavengers). It is important to determine compatibility of entomopathogenic nematodes with other pest management tactics such as chemical insecticides. We hypothesized that chemical insecticides have negative impact on scavenging nematodes. According to our hypothesis, we first investigated the effects of direct exposure of Steinernema carpocapsae infectivity juveniles (IJs) to three chemical insecticides, cypermethrin, spinosad or diflubenzuron in terms of nematode survival and virulence. Subsequently, using the same chemicals, we tested the effects of insecticide-killed insects on scavenger nematode penetration efficiency, time of emergence and the number of nematode progeny. Prior to our study, the impact of pesticides on scavenger nematode fitness had not been studied. Fall webworm, Hyphantria cunea, and greater wax moth, Galleria mellonella, larvae were used as host insects. The survival rate of IJs after direct exposure was 83% for cypermethrin and 93-97% for the other insecticides and control. There were no significant differences in the survival and virulence of the nematodes after 24 h exposure to insecticides. The number of nematodes that invaded the insecticide-killed host was significantly higher in cypermethrin and spinosad treated groups and live H. cunea than in the diflubenzoron treated group and freeze-killed control. However, no significant differences were observed in time of emergence. Significantly more progeny IJs emerged from Spinosad-killed insects than the freeze-killed control. In conclusion, we discovered that the fitness of scavenging IJs is not diminished by insecticides in insect cadavers. In fact, in some cases the exposure to chemical insecticides may enhance virulence.


Subject(s)
Diflubenzuron/toxicity , Insecticides/toxicity , Macrolides/toxicity , Pyrethrins/toxicity , Rhabditida/drug effects , Animals , Drug Combinations , Insecta/drug effects , Longevity/drug effects , Rhabditida/pathogenicity , Virulence/drug effects
10.
Sci Rep ; 11(1): 11253, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045620

ABSTRACT

Our study aimed to identify the novel acaricidal compound in Xenorhabdus szentirmaii and X. nematophila using the easyPACId approach (easy Promoter Activated Compound Identification). We determined the (1) effects of cell-free supernatant (CFS) obtained from mutant strains against T. urticae females, (2) CFS of the acaricidal bioactive strain of X. nematophila (pCEP_kan_XNC1_1711) against different biological stages of T. urticae, and females of predatory mites, Phytoseiulus persimilis and Neoseiulus californicus, (3) effects of the extracted acaricidal compound on different biological stages of T. urticae, and (4) cytotoxicity of the active substance. The results showed that xenocoumacin produced by X. nematophila was the bioactive acaricidal compound, whereas the acaricidal compound in X. szentirmaii was not determined. The CFS of X. nematophila (pCEP_kan_XNC1_1711) caused 100, 100, 97.3, and 98.1% mortality on larvae, protonymph, deutonymph and adult female of T. urticae at 7 dpa in petri dish experiments; and significantly reduced T. urticae population in pot experiments. However, the same CFS caused less than 36% mortality on the predatory mites at 7dpa. The mortality rates of extracted acaricidal compound (xenocoumacin) on the larva, protonymph, deutonymph and adult female of T. urticae were 100, 100, 97, 96% at 7 dpa. Cytotoxicity assay showed that IC50 value of xenocoumacin extract was 17.71 µg/ml after 48 h. The data of this study showed that xenocoumacin could potentially be used as bio-acaricide in the control of T. urticae; however, its efficacy in field experiments and its phytotoxicity need to be assessed in future.


Subject(s)
Acaricides/pharmacology , Tetranychidae/drug effects , Xenorhabdus , Animals , Larva/drug effects
11.
Biol Control ; 155: 104527, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33814871

ABSTRACT

The entomopathogenic fungus (EPF) Metarhizium brunneum occupies the same ecological niche as entomopathogenic nematodes (EPN), with both competing for insects as a food source in the rhizosphere. Interactions between these biocontrol agents can be antagonistic or synergistic. To better understand these interactions, this study focussed on investigating the effect of M. brunneum volatile organic compounds (VOCs), 1-octen-3-ol and 3-octanone, on EPN survival and behaviour. These VOCs proved to be highly toxic to the infective juveniles (IJs) of the EPN Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora with mortality being dose dependent. Chemotaxis studies of H. bacteriophora IJs in Pluronic F127 gel revealed significant preference for the VOCs compared with controls for all tested concentrations. The VOCs also impacted on the test insects in a dose-dependent manner with 3-octanone being more toxic to Galleria mellonella, Cydia splendana and Curculio elephas larvae than 1-octen-3-ol. Mortality of C. splendana and G. mellonella larvae was significantly higher when exposed to relatively high doses (>25%) of 3-octanone. Lower doses of 3-octanone and 1-octen-3-ol immobilised test insects, which recovered after exposure to fresh air for 2 hrs. In depth studies on H. bacteriophora showed that exposure of IJs to > 10% concentration of 3-octanone or 1-octen-3-ol negatively affected infectivity whereas exposure to lower doses (0.1%, 0.01%) had no effect. The VOCs affected IJs, reducing penetration efficacy and the number of generations inside G. mellonella but they failed to inhibit the bacterial symbiont, Photorhabdus kayaii. The ecological significance of VOCs and how they could influence EPF-EPN insect interactions is discussed.

12.
J Invertebr Pathol ; 174: 107418, 2020 07.
Article in English | MEDLINE | ID: mdl-32525025

ABSTRACT

The bacterial metabolites in supernatants of Xenorhabdus species have acaricidal activity, but this mode of entry into mites has not yet been elucidated. Herein, we report on the possible mode of entry of Xenorhabdus szentirmaii and Xenorhabdus nematophila supernatants into Tetranychus urticae (Acari: Tetranychidae) adult females. We also assessed the toxicity of the supernatants against the developmental stages of the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus (Acari: Phytoseiidae). Experiments were conducted at 25 ± 1 °C, 70 ± 5% relative humidity, and 16:8h light:dark conditions. Our data showed that the bioactive acaricidal compound is most effective (86.5 to 89% mortality) when the entire integument of T. urticae comes in contact with it compared to contact of the ventral side only (26.5-34%). Against P. persimilis and N. californicus at 6 days post-application (dpa), the eggs were not affected by the X. szentirmaii or X. nematophila supernatant, whereas mortality of the mobile stages (larva, protonymph, deutonymph, adult) was 18.5% to 39.2%. Overall, the predatory mites were less affected by the bacterial metabolites than T. urticae. We hypothesize that the differences in morphology such as longer legs and thicker cuticle, as well as the diet of the predatory mites, reduce the contact of the body parts to the supernatant-treated surfaces. We need to isolate, identify, and characterize the X. szentirmaii and X. nematophila metabolite(s) and demonstrate efficacy to pestiferous mites and safety to plants, non-target organisms and the environment before it can be used as an acaricide.


Subject(s)
Food Chain , Mites/drug effects , Xenorhabdus/chemistry , Animals , Female , Larva/drug effects , Larva/growth & development , Larva/physiology , Mites/growth & development , Mites/physiology , Nymph/drug effects , Nymph/growth & development , Nymph/physiology , Ovum/drug effects , Ovum/growth & development , Ovum/physiology , Secondary Metabolism , Tetranychidae/chemistry , Tetranychidae/microbiology
13.
Beilstein J Org Chem ; 16: 956-965, 2020.
Article in English | MEDLINE | ID: mdl-32461774

ABSTRACT

The global threat of multiresistant pathogens has to be answered by the development of novel antibiotics. Established antibiotic applications are often based on so-called secondary or specialized metabolites (SMs), identified in large screening approaches. To continue this successful strategy, new sources for bioactive compounds are required, such as the bacterial genera Xenorhabdus or Photorhabdus. In these strains, fabclavines are widely distributed SMs with a broad-spectrum bioactivity. Fabclavines are hybrid SMs derived from nonribosomal peptide synthetases (NRPS), polyunsaturated fatty acid (PUFA), and polyketide synthases (PKS). Selected Xenorhabdus and Photorhabdus mutant strains were generated applying a chemically inducible promoter in front of the suggested fabclavine (fcl) biosynthesis gene cluster (BGC), followed by the analysis of the occurring fabclavines. Subsequently, known and unknown derivatives were identified and confirmed by MALDI-MS and MALDI-MS2 experiments in combination with an optimized sample preparation. This led to a total number of 22 novel fabclavine derivatives in eight strains, increasing the overall number of fabclavines to 32. Together with the identification of fabclavines as major antibiotics in several entomopathogenic strains, our work lays the foundation for the rapid fabclavine identification and dereplication as the basis for future work of this widespread and bioactive SM class.

14.
J Invertebr Pathol ; 171: 107332, 2020 03.
Article in English | MEDLINE | ID: mdl-32027881

ABSTRACT

Sponges are one of the cheapest and most suitable substrates used to formulate and/or store the infective juveniles (IJs) of entomopathogenic nematodes (EPNs). Our study investigated the survival and infectivity of the IJs on five different sponges compared to that in an aqueous suspension (control). The sponges were Oasis® floral, Nanosponge, ScotchbriteTM, or Lysol® and natural sea sponge. EPN species tested were Heterorhabditis bacteriophora, Steinernema carpocapsae and S. feltiae. The recovery efficiency of the IJs from sponges was initially assessed. Subsequently, IJs were stored in the sponges and placed in plastic bags or Falcon tubes and incubated at 10° or 27 °C for 8 months or 11 weeks, respectively. IJ survival and infectivity were monitored monthly for the 10 °C and weekly for 27 °C in these sponge types. The IJs were recovered from the sponges, and their survival was based on observing their movement under a dissecting microscope, and infectivity was based on larval mortality in Galleria mellonella. Recovery efficiency of IJs was best for the Oasis floral sponge for all nematode species ranging between 83 and 91%. The survival and infectivity of stored IJs in all sponge types and control for both 10° and 27 °C gradually decreased over time. IJs stored in Scotchbrite, Lysol, and Nanosponge had the best survival and infectivity, whereas Oasis floral and natural sea sponges showed the poorest results. After 8 months at 10 °C in plastic bags, the survival ratio of all IJs in these three sponges (Scotchbrite, Lysol, and Nanosponge) was approximately 55%. IJs in Scotchbrite and Nanosponge were also able to survive and retain their infectivity at 27 °C for 3 months. IJs stored in Falcon tubes had survival that ranged from 26 to 53% at 27 °C and 55 to 77% at 10 °C. H. bacteriophora IJs lost their infectivity when stored at 27 °C after 10 weeks. However, S. carpocapsae and S. feltiae exhibited 85% infectivity when stored in Scotchbrite and 50% in Nanosponge, respectively. Overall, sponges made from polyurethane (Scotchbrite) followed by melamine (Nanosponge) and cellulose (Lysol) are recommended for long-term nematode storage and transportation of nematode samples. However, Oasis floral sponge may be preferred for short-term IJ formulation for field applications because of easier recovery of IJs.


Subject(s)
Insect Control/methods , Moths/parasitology , Pest Control, Biological/methods , Rhabditida/physiology , Specimen Handling/methods , Animals , Larva/growth & development , Larva/parasitology , Longevity , Moths/growth & development , Specimen Handling/instrumentation
15.
Front Microbiol ; 10: 2672, 2019.
Article in English | MEDLINE | ID: mdl-31824457

ABSTRACT

Xenorhabdus and/or Photorhabdus bacteria produce antibacterial metabolites to protect insect cadavers against food competitors allowing them to survive in nature with their nematode host. The effects of culture supernatant produced by Xenorhabdus and Photorhabdus spp. were investigated against the multidrug-resistant dental root canal pathogen Enterococcus faecalis. The efficacy of seven different cell-free supernatants of Xenorhabdus and Photorhabdus species against E. faecalis was assessed with overlay bioassay and serial dilution techniques. Additionally, time-dependent inactivation of supernatant was evaluated. Among the seven different bacterial species, X. cabanillasii produced the strongest antibacterial effects. Loss of bioactivity in a phosphopantetheinyl transferase-deficient mutant of X. cabanillasii indicated that this activity is likely based on non-ribosomal peptide synthetases (NRPSs) or polyketide synthases (PKSs). Subsequent in silico analysis revealed multiple possible biosynthetic gene clusters (BGCs) in the genome of X. cabanillasii including a BGC homologous to that of zeamine/fabclavine biosynthesis. Fabclavines are NRPS-derived hexapeptides, which are connected by PKS-derived malonate units to an unusual polyamine, also PKS-derived. Due to the known broad-spectrum bioactivity of the fabclavines, we generated a promoter exchange mutant in front of the fabclavine-like BGC. This leads to over-expression by induction or a knock-out by non-induction which resulted in a bioactive and non-bioactive mutant. Furthermore, MS and MS2 experiments confirmed that X. cabanillasii produces the same derivatives as X. budapestensis. The medicament potential of 10-fold concentrated supernatant of induced fcl promoter exchanged X. cabanillasii was also assessed in dental root canals. Calcium hydroxide paste, or chlorhexidine gel, or fabclavine-rich supernatant was applied to root canals. Fabclavine-rich supernatant exhibited the highest inactivation efficacy of ≥3 log10 steps CFU reduction, followed by calcium hydroxide paste (≤2 log10 step). The mean percentage of E. faecalis-free dental root canals after treatment was 63.6, 45.5, and 18.2% for fabclavine, calcium hydroxide, and chlorhexidine, respectively. Fabclavine in liquid form or preferably as a paste or gel formulation is a promising alternative intracanal medicament.

16.
Angew Chem Int Ed Engl ; 58(52): 18957-18963, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31693786

ABSTRACT

Natural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs. By exchanging the native promoter of a desired BGC against an inducible promoter in Δhfq mutants, almost exclusive production of the corresponding NP from the targeted BGC in Photorhabdus, Xenorhabdus and Pseudomonas was observed including the production of several new NPs derived from previously uncharacterized non-ribosomal peptide synthetases (NRPS). This easyPACId approach (easy Promoter Activated Compound Identification) facilitates NP identification due to low interference from other NPs. Moreover, it allows direct bioactivity testing of supernatants containing secreted NPs, without laborious purification.


Subject(s)
Biological Products/chemistry , Biosynthetic Pathways/genetics , Metabolomics/methods , Humans
17.
J Invertebr Pathol ; 160: 61-66, 2019 01.
Article in English | MEDLINE | ID: mdl-30528928

ABSTRACT

The effects of secondary metabolites produced by the following symbiotic bacteria, Xenorhabdus szentirmaii, X. nematophila, X. bovienii, X. cabanillasii, Photorhabdus luminescens and P. temperata, associated with entomopathogenic nematodes, were investigated against various developmental stages of Tetranychus urticae (Acari: Tetranychidae) using cell-free bacterial supernatants in Petri dishes. In addition, the effects of the most active bacterial supernatant(s) found in Petri dish experiments were tested on T. urticae in pot experiments. All studies were conducted at 25 ±â€¯1 °C temperature, 70 ±â€¯5% relative humidity and a light cycle of 16 h in a climate room. The result of the Petri dish experiments showed that the supernatants had little or no effect on the egg stage, as less than 4% mortality was recorded. Depending on the bacterial supernatant, mortality in the other stages was 46-97% for larvae, 30-96% for protonymphs, 41-92% for deutonymphs, 92-100% for adult males and 46-93% for adult females. Control mortalities ranged from 1-7% for larvae, 2-9% for protonymphs, 4-10% for deutonymphs, 6-10% for adult males and 4-8% for adult females. Among supernatants tested, X. szentirmaii and X. nematophila were the most efficacious with mortality greater than 90% on the mobile stages of T. urticae. According to the results from pot experiments, the supernatants of X. szentirmaii and X. nematophila, singularly and in combination, significantly reduced the T. urticae population. However, the mixture of X. szentirmaii and X. nematophila supernatants did not increase efficiency to reduce T. urticae population compared to each supernatant alone. Further studies are warranted to find the active compound(s) in the supernatants of X. szentirmaii or and X. nematophila and assess whether the supernatant(s) has the potential of being a practical and economical control agent for T. urticae.


Subject(s)
Acaricides , Photorhabdus/metabolism , Tetranychidae/drug effects , Xenorhabdus/metabolism , Acaricides/pharmacology , Animals , Bacteria/metabolism , Bacterial Toxins/pharmacology , Female , Larva/drug effects , Larva/microbiology , Male , Nematoda/microbiology , Secondary Metabolism , Symbiosis , Tetranychidae/microbiology
18.
J Nematol ; 48(3): 148-158, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27765988

ABSTRACT

A new species of entomopathogenic nematode (EPN), Steinernema biddulphi n. sp., was isolated from a maize field in Senekal, Free State Province of South Africa. Morphological and molecular studies indicated the distinctness of S. biddulphi n. sp. from other Steinernema species. Steinernema biddulphi n. sp. is characterized IJs with average body length of 663 µm (606-778 µm), lateral fields with six ridges in mid-body region forming the formula 2,6,2. Excretory pore located anterior to mid-pharynx (D% = 46). Hyaline layer occupies approximately half of tail length. Male spicules slightly to moderately curved, with a sharp tip and golden brown in color. The first generation of males lacking a mucron on the tail tip while the second generation males with a short filamentous mucron. Genital papillae with 11 pairs and one unpaired preanal papilla. The new species is further characterized by sequences of the internal transcribed spacer (ITS) and partial 28S regions (D2-D3) of the ribosomal DNA (rDNA). Phylogenetic data show that S. biddulphi n. sp. belongs to the "bicornutum" clade within the Steinernematidae family.

19.
Zootaxa ; 3821(3): 337-53, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24989748

ABSTRACT

A new entomopathogenic nematode, Steinernema tophus n. sp. is described from South Africa. Morphological, molecular (ribosomal gene sequence data) together with cross-hybridization studies were used for diagnostics and identification purposes. Both molecular and morphological data indicate the new species belongs to the 'glaseri-group' of Steinernema spp. Key morphological diagnostic traits for S. tophus n. sp. include the morphology of the spicules and gubernaculum. Morphometric traits of third-stage infective juveniles, including total body length (average 1,046 µm), tail length (average 70 µm), location of the excretory pore (average 92 µm), D% (average 63), E% (average 132) and H% (average 32) values are definitive. In addition to these morphological characters, analysis of rDNA (28S and ITS) gene sequences depict this Steinernema species as a distinct and unique entity.


Subject(s)
Rhabditida/classification , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Female , Host Specificity , Male , Organ Size , Phylogeny , Rhabditida/anatomy & histology , Rhabditida/genetics , Rhabditida/growth & development , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...